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• Accelerator Neutrino Experiments, e.g. DUNE

• Simulate scattering cross sections to predict detector efficiency and backgrounds

Neutrino-nucleus scattering
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• Dynamical linear response function

𝑆 𝜔, ෠𝑂 =෍

𝜈

𝜙𝜈 ෠𝑂 𝜙0
2
𝛿 𝐸𝜈 − 𝐸0 − 𝜔 = ∫ 𝑑𝑡 𝜙0 ෠𝑂†𝑒−𝑖 ෡𝐻−𝐸0−𝜔 𝑡 ෠𝑂 𝜙0

Nuclei: ෡𝐻 𝜙𝜈 = 𝐸𝜈|𝜙𝜈⟩ ground state: 𝜙0

• 𝑆 𝜔, ෠𝑂 → inclusive cross sections

• Sample the final nuclei state |𝜙𝜈⟩ → semi-exclusive cross sections

• Quantum advantage: bigger nuclei, wide range of kinematics

Simulate response function and cross sections
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• Approximately reproduce binding of 3 and 4 nucleons

[Phys. Lett. B 772 839-848 (2017), PRL 124 143402 (2020)]

• Simple model for initial study and quantum resource estimation

– Future: need interactions involving virtual pions for accurate prediction

Starting point: pionless effective field theory
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Kinetic energy

Attractive 2-body contact interaction (𝐶0 < 0)

Repulsive 3-body interaction (𝐷0 > 0) to 

avoid collapse into deeply bound state
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𝑆 𝜔, ෠𝑂 = σ𝜈 𝜙𝜈 ෠𝑂 𝜙0
2
𝛿(𝐸𝜈 − 𝐸0 −𝜔)

= σ𝜈 ⟨𝜙𝜈|𝜓 ෠𝑂⟩
2 𝛿(𝐸𝜈 − 𝐸0 − 𝜔) ⟨𝜙0| ෠𝑂

† ෠𝑂 𝜙0

1. Qubit encoding: represent the system by qubits

2. State preparation: |𝜓 ෠𝑂⟩

3. Quantum phase estimation of |𝜓 ෠𝑂⟩ with ෡𝑈 = 𝑒𝑖( ෡𝐻−𝐸0)

4. Measure ancilla qubits: probability distribution → 𝑆 𝜔, ෠𝑂

(nuclei state by measuring the encoding qubits)

Dynamic linear response quantum algorithm
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Prob. of |𝜓 ෠𝑂⟩ in eigenbasis 𝜙𝑣 → QPE Ground state meas.

|𝜓 ෠𝑂⟩ =
෠𝑂 𝜙0

⟨𝜙0| ෠𝑂
† ෠𝑂 𝜙0

Complexity



• Nucleons (fermions) → qubits

• General mapping: Jordan-Wigner, Bravyi-Kitaev [1], etc.

• Special case of fixed nucleons: lattice-location encoding

nucleon 1: 1 𝑁1 = 0 𝑞0 0 𝑞1, 2 𝑁1 = 0 𝑞0 1 𝑞1, …

nucleon 2: 1 𝑁2 = 0 𝑞2 0 𝑞3, 2 𝑁2 = 0 𝑞2 1 𝑞3, …

...

• Efficiency: 𝐴 nucleons on a lattice with 𝑀 sites and 𝑁𝑓
fermion mode per site

JW, BK                   :   𝑁𝑓 ×𝑀 qubits

Lattice-location       :   𝐴 log2𝑀 qubits

Qubit encoding efficiency
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[1]: Ann. Phys. 298, 210 (2002)
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• QFT and Control-𝑈 circuits
෡𝑈 = 𝑒𝑖( ෡𝐻−𝐸0): system propagator

• QFT:  gate cost = 𝑂 𝑁2

𝑁: number of ancilla qubits

• 𝑈 circuits: Trotter decompositions

– 𝑈1(𝜏) = 𝑒−𝑖𝜏𝐾𝑒−𝑖𝜏𝑉

– 𝑈2
𝐾+𝑉(𝜏) = 𝑒−𝑖𝜏𝐾/2𝑒−𝑖𝜏𝑉𝑒−𝑖𝜏𝐾/2

– 𝑈2
𝑉+𝐾(𝜏) = 𝑒−𝑖𝜏𝑉/2𝑒−𝑖𝜏𝐾𝑒−𝑖𝜏𝑉/2

• Control-𝑈 circuits: replace gates by their 

controlled version

Quantum phase estimation
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K: kinetic energy

V: potential energy

Diagonal in qubit 

basis after JW
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• Gate counts based on 2 gates

– CNOT: control-not, two-qubit gate

– RZ: rotation-Z, single-qubit gate

• Quadratic decomposition: favorable

• Gate counts → ~1010

– Final 99% fidelity: 1 − 𝑒
ln 0.99

1010

→ ~ 10−12 gate error rate

– Need error-corrected qubits for full linear 

response algorithm simulating realistic model

Gate counts of quantum phase estimation 
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# of lattice sites =103

# of fermion species = 4

Precision = 10 MeV

Encoding: JW
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1. Qubit encoding: small # of nucleons

- Lattice-location encoding

2. State preparation: |𝜓 ෠𝑂⟩ =
෠𝑂 𝜙0

⟨𝜙0| ෠𝑂† ෠𝑂 𝜙0

- Approximated low-energy state ෨𝜙0 by a variational ansatz

3. Quantum phase estimation of |𝜓 ෠𝑂⟩ with ෡𝑈 = 𝑒𝑖( ෡𝐻−𝐸0)

- Time evolution by ෡𝑈 𝑡 = 𝑒𝑖 ෡𝐻−𝐸0 𝑡 on a pretrained initial state

4. Measure ancilla qubits: probability distribution → 𝑆 𝜔, ෠𝑂

- Directly measure 𝑆 𝜔, ෠𝑂 = ∫ 𝑑𝑡 𝜙0 ෠𝑂†𝑒−𝑖 ෡𝐻−𝐸0−𝜔 𝑡 ෠𝑂 𝜙0 (no ancilla qubits)

NISQ implementation of modified linear response algorithm
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• Triton toy model:

– 3 nucleons with one chosen to be static on a 2 by 2 lattice

– 2 effective nucleons (𝐴 = 2, 𝑁𝑓 = 2, 𝑀 = 4)

– Two-nucleon dynamics incorporates important information 

about nuclear response (arXiv:1909.06400)

• Lattice-location encoding: 𝐴 log𝑀 = 4 qubits

– In comparison, JW needs 𝑁𝑓𝑀 = 8 qubits

4-qubit proof-of-principle experiment
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𝐶0 = 𝑈,𝐷0 = −4𝑈
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IBMQ Poughkeepsie

https://arxiv.org/abs/1909.06400


• 2-parameter variational ansatz |𝜙 Ԧ𝜃 ⟩

• Trained by a noiseless simulator to minimized the 

energy 𝐸 Ԧ𝜃 = ⟨𝜙 Ԧ𝜃 𝐻 𝜙 Ԧ𝜃 ⟩

• Optimized state: ෨𝜙0 = ෠𝑂 𝜙0 (low-energy state)

• Run the pretrained circuit on the IBM QPU

• QPU shows a promising result with error mitigation 

(readout error mitigation and noise extrapolation)

State preparation with a variational ansatz 
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|𝜙 Ԧ𝜃 ⟩

|0⟩

|0⟩

|0⟩

|0⟩
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exact g.s.

simulator



• 1st order Trotter’s step: 𝑈 𝜏 = 𝑒−𝑖𝜏𝐾𝑒−𝑖𝜏𝑉

• Initial state: pretrained state ෨𝜙0

• 3-body contact with : 𝐶3 𝜏 = 0000|𝑈 𝜏 ෨𝜙0
2

|0000⟩: all nucleons at site 1 

Time evolution with 1 Trotter step

K

V



• Expt. result: 3-week-window 

collection

• Output: considerable change 

from run to run

• error is noticeable for a single 

Trotter’s step 

→ cannot do multiple 

Trotter’s steps

• Error mitigation is insufficient 

to bring down the error

Result of 1-Trotter-step time evolution 
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QPU (without 

error mitigation)

Noisy sim.

Ideal sim.

(1 trotter step)

t > 0.1: insufficient # of Trotter step
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1. Qubit encoding: small # of nucleons

- Lattice-location encoding

2. State preparation: |𝜓 ෠𝑂⟩ =
෠𝑂 𝜙0

⟨𝜙0| ෠𝑂† ෠𝑂 𝜙0

- Approximated low-energy state ෨𝜙0 by a variational ansatz

3. Quantum phase estimation of |𝜓 ෠𝑂⟩ with ෡𝑈 = 𝑒𝑖( ෡𝐻−𝐸0)

- Time evolution by ෡𝑈 𝑡 = 𝑒𝑖 ෡𝐻−𝐸0 𝑡 on a pretrained initial state

4. Measure ancilla qubits: probability distribution → 𝑆 𝜔, ෠𝑂

- Directly measure 𝑆 𝜔, ෠𝑂 = ∫ 𝑑𝑡 𝜙0 ෠𝑂†𝑒−𝑖 ෡𝐻−𝐸0−𝜔 𝑡 ෠𝑂 𝜙0

Promising result and further studies needed
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✓

✓

Further studies on 

error mitigation,

hardware 

improvement
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• Quantum algorithm for dynamic linear response 𝑆 𝜔, ෠𝑂

– Inclusive/exclusive cross sections of neutrino-nucleus scattering

– Components: state preparation and quantum phase estimation

– Full scale studies with realistic model: potentially an important 

application of error-corrected quantum computer

• NISQ implementation

– Components: ground state preparation and time evolution

– Promising result with today hardware

– Linear response of simple models: near-term applications with 

error mitigation strategies implemented and hardware 

improvement

Overview
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